
Homological algebra solutions Week 4

1. Consider the commutative diagram of R-modules

A′ B′ C ′ 0

0 A B C

f

i′

g

p′

h

i p

We want to show that the sequence

ker(f)
α−→ ker(g)

β−→ ker(h)
∂−→ coker(f)

φ−→ coker(g)
ψ−→ coker(h)

is exact, where α, β, φ, and ψ are respectively induced by i′, p′, i and p. These morphisms are well
defined by commutativity of the diagram. Let c ∈ ker(h), by surjectivity of p′, there is b ∈ B′ with
p′(b) = c. By commutativity of the diagram, pg(b) = hp′(b) = 0, so g(b) ∈ ker(p) = im(i), thus there
exists some a ∈ A such that i(a) = g(b). In order to define ∂(c) = a, we have to verify that this is well
defined, the only non-canonical choice we made is the choice of the preimage b ∈ B′. Let b, b′ ∈ B′ such
that p′(b) = c = p′(b′), and a, a′ such that i(a) = g(b), i(a′) = g(b′). Then b − b′ ∈ ker(p′) = im(i′),
so there exists ã ∈ A′ such that i′(ã) = b − b′. We have that g(b − b′)) = if(ã), so by injectivity of i,
a− a′ = f(ã) ∈ im(f), so ∂ : ker(h) → coker(f) is well defined.

We start by showing that ker(β) = im(α). We know that p′i′ = 0, thus βα = 0 so we just have to prove
that ker(β) ⊂ im(α). Let x ∈ ker(β) ⊂ ker(g), in particular, x ∈ ker(p′) = im(i′), i.e. there exists
some y ∈ A′ such that i′(y) = x. We know that if(y) = gi′(y) = g(x) = 0, and since i is injective,
y ∈ ker(f). By definition of α, α(y) = x, so the sequence is exact at ker(g).

We will now show that ker(∂) = im(β). Let x ∈ ker(g), then

∂β(x) = ∂p′(x) = i−1gp′−1p′(x) = i−1g(x) = 0,

so im(β) ⊂ ker(∂). Let x ∈ ker(∂) ⊂ ker(h), by surjectivity of p′, there exists some y ∈ B′ such that
p′(y) = x. Since pg(y) = hp′(y) = h(x) = 0, y ∈ ker(p) = im(i), so there is some z ∈ A such that
i(z) = g(y). By definition of ∂, z + im(f) = ∂(x) + im(f) = 0 + im(f), that means that z ∈ im(f), so
there exists a ∈ A′ such that f(a) = z. Moreover, g(y − i′(a)) = g(y) − if(a) = g(y) − i(z) = 0, thus
i′(a)− y ∈ ker(g) and β(y− i′(a)) = β(y)− p′i′(a) = β(y) = x. Therefore, x ∈ im(β), and we conclude
that the sequence is exact at ker(h).

We prove that ker(φ) = im(∂). Let x ∈ ker(h), then φ∂(x) = gp−1(x) = 0+ im(g) i.e. im(∂) ⊂ ker(φ).
Now assume x ∈ ker(φ), and let x̃ ∈ A be a residue of x, then i(x̃) ∈ im(g), so there is some y ∈ B′

such that g(y) = i(x̃). We see that hp′(y) = pg(y) = pi(x̃) = 0, thus p′(y) ∈ ker(h), and by definition
∂p′(y) = x, so x ∈ im(∂).

Finally, we prove that the sequence is exact at coker(g). By exactness of the second row, ψφ = 0.
Let x ∈ kerψ and x̃ ∈ B a residue of x, then p(x̃) ∈ im(h), so there is some y ∈ C ′ such that
h(y) = p(x̃). By surjectivity of p′, there also is some z ∈ B′ such that p′(z) = y. We can see that
p(x̃) = h(y) = hp′(z) = pg(z), so x̃ − g(z) ∈ ker(p) = im(i). Let a ∈ A be such that i(a) = x̃ − g(z),
then φ(a) = x− g(z) = x+ im(g), thus x ∈ im(φ). We conclude that the sequence is indeed exact.
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Moreover, if i′ : A′ → B′ is injective, its restriction to ker(f) is also injective. If p : B → C is surjective,
the quotient map coker(g) → coker(h) will also be surjective by definition.

2. (a) By the long exact sequence theorem , there is a long exact sequence

· · · Hn+1(C) Hn(A) Hn(B) Hn(C) Hn−1(A) · · ·

Recall that a complex A is exact if and only ifHn(A) = 0 for every n. If two of the three complexes
are exact, the sequence is of the form

· · · 0 0 Hn(I) 0 0 · · ·

where I ∈ {A,B,C} depending on our assumption. By exactness of the long sequence, Hn(I) = 0
for every n, which implies that the complex I is exact.

(b) The long exact sequence induced by the short exact sequence

0 ker(f) C im(f) 0α

shows that α is a quasi-isomorphism, and the long exact sequence induced by the short exact
sequence

0 im(f) D coker(f) 0
β

shows that β is a quasi-isomorphism. Thus f = β ◦ α is a quasi-isomorphism.

The converse is false. Indeed consider the following morphism of chain maps

0 0 Z Z 0

0 Z Z 0 0

id

id

id

The rows are exact, so this is a quasi-isomorphism. The complex of the kernel of this morphism
is given by

0 0 0 Z 0 ,

which is not acyclic.

3. We can easily see that the kernel and the image of the morphism Z/4Z ·2−→ Z/4Z are both Z/2Z, thus
the homology groups are 0 and the complex is acyclic. Let φ : Z/4Z → Z/4Z, the image of ·2 is {0, 2},
φ(2) has to be even, and ·2 sends even number to 0, so ·2◦φ◦ ·2 = 0, thus this sequence does not split.

4. We show that a chain map {sn : Cn−1 → Dn} makes the following diagram commutes i.e. f extends
to a map (−s, f) : cone(C) → D

cone(C)n+1 cone(C)n

Dn+1 Dn

δ

(−s,f) (−s,f)

d

if and only if it satisfies f = ds+ sd i.e. f is null homotopic. We recall that the differential of cone(C)
is given by δ(cn, cn+1) = (−d(cn), d(cn+1 − cn)). Let cn ∈ Cn, cn+1 ∈ Cn+1, then

f(cn)− ds(cn)− sd(cn) = df(cn+1)− fd(cn+1) + f(cn)− ds(cn)− sd(cn)

= d(f(cn+1)− s(cn))− (fd(cn+1)− f(cn) + sd(cn))

= (d ◦ (−s, f))(cn, cn+1)− ((−s, f) ◦ δ)(cn, cn+1).
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